Session 3 HRI Technology Intelligent connection from perception to action

"Intelligent connection of perception to action"

- **Feature Extraction**
- **Semantic Understanding**

tip: most information (~75 %) received everyday for human beings are visual signals

- **Feature Extraction**
- **Semantic Understanding**

Sensors

2D camera 3D camera

Sensors

2D camera	0
	20
Grayscale Camera RGB Color Camera	40
	60

80

Visual-based -> Data Capturing

Sensors

3D camera

Depth Camera

- Kinect
- Intel RealSense SR300

Stereo Camera

- Intel RealSense F200
- Bumblebee® Stereo Vision camera

Depth Image

The value of each pixel in depth image refers to the distance between the object and camera

Sensors

3D camera

Depth Camera

- Kinect
- Intel RealSense SR300

Stereo Camera

- Intel RealSense F200
- Bumblebee® Stereo Vision camera •

Kinect V2 for Windows

IR Emitter/Projector and IR Camera

Visual-based -> Data Capturing

Sensors

3D camera

Depth Camera

- Kinect
- Intel RealSense SR300

- Intel RealSense F200
- Bumblebee® Stereo Vision camera

Sensors

3D camera

Depth Camera

- Kinect
- Intel RealSense SR300

- Intel RealSense F200
- Bumblebee® Stereo Vision camera

Sensors

3D camera

Depth Camera

- Kinect
- Intel RealSense SR300 •

- Intel RealSense F200
- Bumblebee® Stereo Vision camera •

Visual-based -> Data Capturing

Sensors

3D camera

Depth Camera

- Kinect
- Intel RealSense SR300

- Intel RealSense F200
- Bumblebee® Stereo Vision camera

Feature

2D-based

- Color
- Intensity
- Texture
- Shape
- Motion
- Skelton

3D-based

- RGB-D signals
 Stereo-Based Depth Signals
- Skeleton
- 3D Point Clouds

2D-based

Color

- an effective feature to represent objects •
- Extracting color **saliency** features to detect object and face •
- easily affected by changing illumination •

(x=164, y=279) - R:146 C:137 8:105

2D-based

Intensity

- the gray-scale value of each pixel in an image
- intensity can be employed for feature representation
- extract conspicuous regions

157	153	174	168	150	152	129	151	172	រតា	155	156
155	182	163	74	75	62	33	17	EHB	210	180	154
180	180	50	14	-84	6	10	33	48	106	169	181
206	109	5	124	131	111	120	204	166	15	56	190
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	pa	-74	206
188	88	179	209	185	215	211	158	129	75	20	169
189	-	168	ы	10	158	134	-11	31	67	22	348
199	368	191	193	158	227	178	143	182	106	35	190
205	174	155	252	296	231	149	178	228	43	95	234
190	216	116	149	296	187	85	150	70	38	218	241
190	224	147	100	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	105	249	215
187	196	235	75	1		. 47	۰	. 6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	205	123	207	177	121	123	200	175	13	96	218

											100 C
157	153	174	168	150	152	129	151	172	161	155	1
155	182	163	74	75	62	33	17	110	210	180	1
180	180	50	14	34	6	10	33	48	106	159	ŀ
206	109	5	124	131	111	120	204	166	15	56	1
194	68	137	251	237	239	239	228	227	87	n	1
172	106	207	233	233	214	220	239	228	98	74	1
188	88	179	209	185	215	211	158	139	75	20	ŀ
189	97	165	84	10	168	134	11	31	62	22	ŀ
199	168	191	193	158	227	178	143	182	106	36	þ
206	174	155	252	236	231	149	178	228	43	96	2
190	216	116	149	236	187	86	150	79	38	218	2
190	224	147	108	227	210	127	102	36	101	255	2
190	214	173	66	103	143	96	50	2	109	249	2
187	196	235	75	1	81	47	0	6	217	255	2
183	202	237	145	0	0	12	108	200	138	243	2
196	206	123	207	177	121	123	200	175	13	96	2

Visual Texture

- Visual texture is an important property for visual signals, and different objects usually demonstrate different texture characteristics
- texture representation methods (LBP, ILBP..) for texture analysis and classification
- usually used for facial expression recognition

2D-based

Shape

- especially for facial image analysis and human detection
- lip, eyes, brow, cheek, furrow, cheeks and chins as human face features
- methods: Adaptive hough transform (AHT), edge orientation histograms (EOH)
- Edge is a useful technique to describe the shape information of objects

Sobel operator

2D-based

Motion

- Motion features have been widely used for object detection, tracking and recognition
- Optical flow is a typical motion feature, which is the distribution of velocities of brightness patterns movement in an image •
- Anther threshold function is applied to compute the absolute • difference between continuous frames in a video sequences, and the positions with high intensity values in a binary map were represented as motion features

Optical flow

Skelton

Real-time multi-person keypoint detection

- 15 or 18-keypoint body estimation •
- 2x21-keypoint hand estimation
- 70-keypoint face estimation

Filtered Feature

- discrete cosine transform (DCT)
- Gabor wavelet
- DCT features have been used in local feature-based face recognition
- Gabor-based features have shown good performance in face recognition and facial expression recognition •

11 Ξ (11) 11 1

Gabor kernels at eight orientations and five scales

Haar-Like Feature

- originally defined as the difference of the sum of pixels in two rectangular areas
- The famous success is the Haar-like features based realtime face detection

RGB-D signals Stereo-Based Depth Signals

- 3D visual signals can provide **distance** information of • objects which the robot is manipulating or interacting
- Kinect and stereo vision systems can obtain **3D** • information of objects.
- Depth images also can be converted to **3D cloud points** • by mapping each pixel into the corresponding 3D coordinates

RGB-D signals Stereo-Based Depth Signals

- Kinect camera can only work over a range of several • meters
- Stereo vision, many commercially available systems have been developed due to mature techniques. These systems are of different sizes and can be used for both indoor and outdoor environments

3D-based

Skelton

3D-based

3d point cloud

A **point cloud** is a set of data points in some coordinate system. In a three-dimensional coordinate system, these points are usually defined by *X*, *Y*, and *Z* coordinates, and often are intended to represent the external surface of an object.

Methods

Object Detection & Recognition

- Template Matching
- Clustering
- Nearest Neighbor •
- Boosting
- Gaussian Mixture Models

Object: human, face, body, object...

Object Tracking

- Gradient descent
- mean shift
- Kalman filter
- Particle filter

Methods

Object Detection & Recognition

Open Pose link

Dense Pose link

Skelton - OpenPose

OpenPose represents the first real-time multiperson system to jointly detect human body, hand, and facial keypoints (in total 130 keypoints) on single images.

Input: Image, video, webcam, and IP camera. Included C++ demos to add your custom input. Output: Basic image + keypoint display/saving (PNG, JPG, AVI, ...), keypoint saving (**JSON**, XML, YML, ...), and/or keypoints as array class.

Skelton - OpenPose

OpenPose represents the first real-time multi-person system to jointly detect human body, hand, and facial keypoints (in total 130 keypoints) on single images.

Input: Image, video, webcam, and IP camera. Included C++ demos to add your custom input.

Output: Basic image + keypoint display/saving (PNG, JPG, AVI, ...), keypoint saving (**JSON**, XML, YML, ...), and/or keypoints as array class.

Boston Dynamics

2D-based

Skelton - OpenPose

OpenPose represents the first real-time multiperson system to jointly detect human body, hand, and facial keypoints (in total 130 keypoints) on single images.

Input: Image, video, webcam, and IP camera. Included C++ demos to add your custom input.

Output: Basic image + keypoint display/saving (PNG, JPG, AVI, ...), keypoint saving (**JSON**, XML, YML, ...), and/or keypoints as array class.

"people":[

}

```
"version":1.1,
```

```
"pose_keypoints_2d": [582.349,507.866,0.845918,746.975,631.307,0.587007,...],
"face_keypoints_2d":[468.725,715.636,0.189116,554.963,652.863,0.665039,...],
"hand_left_keypoints_2d": [746.975,631.307,0.587007,615.659,617.567,0.377899,...],
"hand_right_keypoints_2d": [617.581,472.65,0.797508,0,0,0,723.431,462.783,0.88765,...]
"pose_keypoints_3d": [582.349,507.866,507.866,0.845918,507.866,746.975,631.307,0.587007,...],
"face_keypoints_3d": [468.725,715.636,715.636,0.189116,715.636,554.963,652.863,0.665039,...],
"hand_left_keypoints_3d": [746.975,631.307,631.307,0.587007,631.307,615.659,617.567,0.377899,...
"hand_right_keypoints_3d": [617.581,472.65,472.65,0.797508,472.65,0,0,0,723.431,462.783,0.88765,
```

```
// If `--part_candidates` enabled
"part_candidates":[
        "0": [296.994,258.976,0.845918,238.996,365.027,0.189116],
        "1":[381.024,321.984,0.587007],
        "2":[313.996,314.97,0.377899],
        "3":[238.996,365.027,0.189116],
        "4":[283.015,332.986,0.665039],
        "5": [457.987,324.003,0.430488,283.015,332.986,0.665039],
        "6":[],
        "7":[],
        "8":[],
        "9":[],
        "10":[],
        "11":[],
        "12":[],
        "13":[],
        "14":[293.001,242.991,0.674305],
        "15": [314.978,241,0.797508],
        "16":[],
        "17": [369.007,235.964,0.88765]
```


2D-based

Object

Object can be served as one type of feature extracted from image or video in multiply scenarios such as home, roads, workplace, public places, etc. Extraction is generally represent with label, bounding box and confidence.

2D-based

image source: ObjectNet

Methods

CNN(卷积神经网络) Convolutional Neural Networks

Convolution -> feature extraction

Max Pooling -> reduce the over-fitting

Fully-connected NN -> classification

Methods

CNN (卷积神经网络) **Convolutional Neural Networks**

Google TenserFlow Object Detection API link

The TensorFlow Object Detection API is an open source framework built on top of TensorFlow that makes it easy to construct, train and deploy object detection models. It creates accurate machine learning models capable of localizing and identifying multiple objects in a single image.

Visual-based **Audio-based Tactile-based**

Laser sensors

- **Data Capturing**
- **Feature Extraction**
- **Semantic Understanding**

Sensors

Microphone Microphone Array

ReSpeaker Mic Array 7 PDM digital microphones 10m detective distance

Feature

Pitch Energy MFCCs

Audio-based -> Feature Extraction

Pitch

- Pitch refers to the fundamental frequency
- Pitch contour, range, mean, median, inflection range, and • rate of change
- Methods: simplified inverse filter tracking (SIFT), the pitch • constraints and dynamic programming search, and the statistical method based on cep-strum

Energy

• volume or intensity of speech which aims to measure the variations of speech signals' amplitude

Audio-based -> Feature Extraction

MFCCs (频率倒谱系数)

 MFCCs are coefficients which collectively make up an mel frequency cepstrum (MFC) to represent a shortterm power spectrum of a sound

Methods

Speaker Localization Speech recognition Sound event classification Emotion recognition Rhythms recognition

Move

Robot Actions

supported by mobile robot platform

four-wheel car

two-wheels car

segway

Move move arms and hands

supported by robot arms and hands kit

embedded double arms

Single arm

Three-finger robot hand

supported by mechanical construction

2 degrees of freedom

Move localize and navigate SLAM (<u>Simultaneous localization and mapping</u>) technology

Display

supported by multi-touch LCD screen

user interface

iconic emotion

image/video

Action

Speak

supported by speech synthesis technology

Configuration

- multi language
- pitch
- volume
- gender
- speed

Content

- word
- number/address/name
- sentence •
- dialogue
- question & answer

